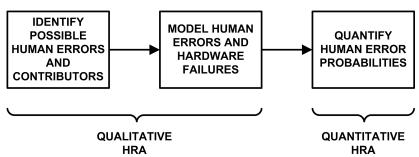
# Human Reliability Considerations for the Transition from Analog to Digital Control Technology in Nuclear Power Plants

Ronald Laurids Boring, PhD Idaho National Laboratory







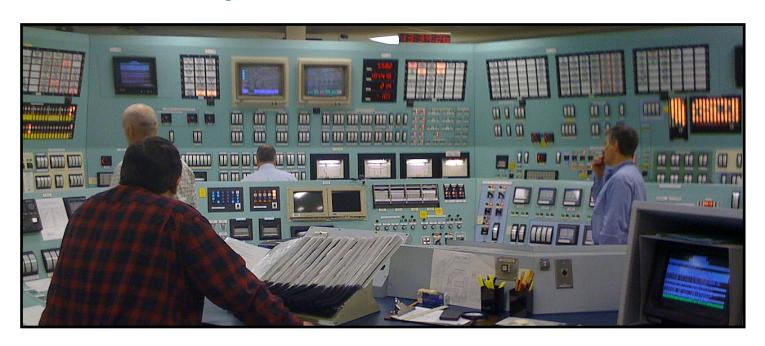

#### Introduction: The Research Issue

# Human reliability analysis (HRA) is framework to identify human component of system risk

Originally developed for nuclear power to minimize human error

Recent adoption in other safety-critical areas like oil and gas,

aerospace, and defense

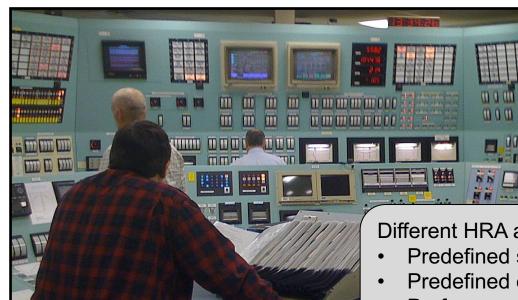



# HRA has not kept pace with advances in digital human-machine interfaces (HMIs)

- HRA designed for operators in analog control rooms
- Digital HMIs potentially change types of tasks operators perform
- Human error types and probabilities may be different than for analog control rooms
- HRAs for new reactors are being completed with 40-year old methods



# HRA Currently




#### **Analog Main Control Rooms**

- Highly proceduralized (paper)
- Analog I&C (one-to-one mapping to plant functions)
- Manual operations
- Distributed control across multiperson crew



# HRA Currently



Different HRA approaches:

- Predefined scenarios (THERP)
- Predefined event trees (CBDT)
- Performance shaping factors (SPAR-H)

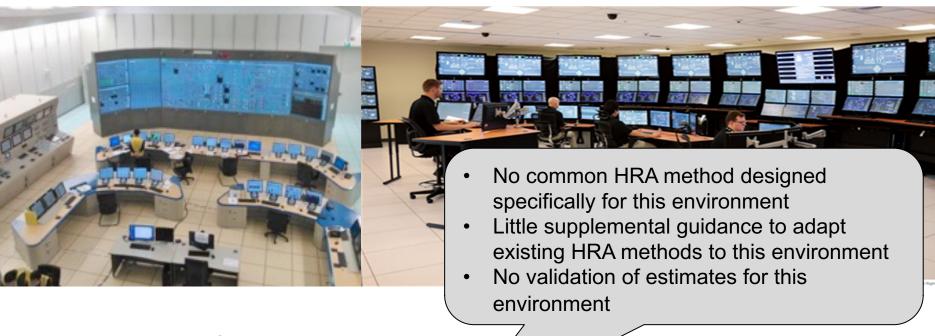
Method estimates validated to this environment

#### **Analog Main Control Rooms**

- Highly proceduralized (paper)
- Analog I&C (one-to-one mapping to plant functions)
- Manual operations
- Distributed control across multiperson crew



# Emerging HRA



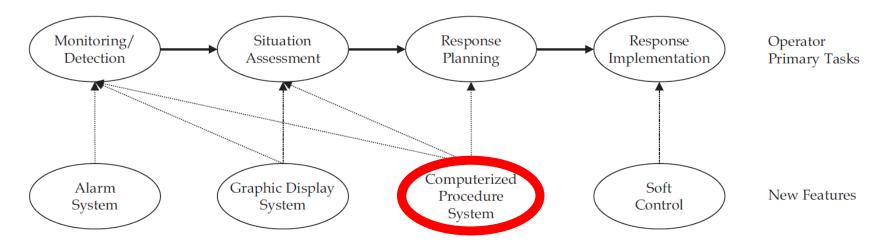

#### **Digital Main Control Rooms**

- Highly proceduralized (digital)
- Digital HMI (localized control screens and shared overview displays)
- Desktop operations and automation
- Localized control by crew members
- Potential remote control rooms for micro reactors



# Emerging HRA




#### **Digital Main Control Rooms**

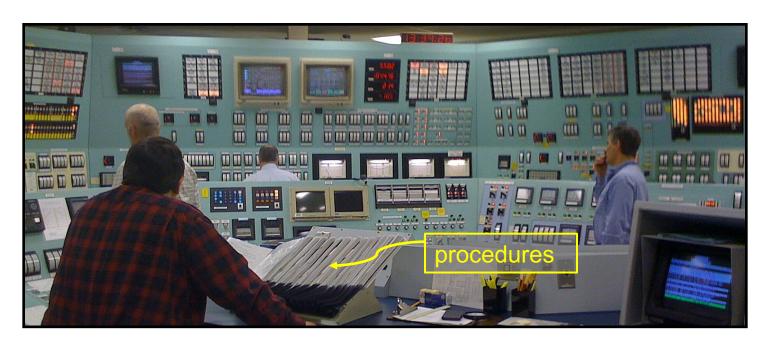
- Highly proceduralized (digital)
- Digital HMI (localized control screens and shared overview displays)
- Desktop operations and automation
- Localized control by crew members
- Potential remote control rooms for micro reactors.



#### What Are the Differences

 To identify candidate technologies, Kim and Dang (2011) suggest pairing technologies to operator primary tasks




- Framework may omit some important aspects of technology interaction like automation or crew interactions and new error types such as caused by cybersecurity exploits
- Serves as useful starting point for identifying technologies and human interactions with that technology



# Procedure Use as a Quick Example

#### **Operators are Required to Follow Procedures Closely**

- No decision or action taken without procedural guidance
- Threeway communication following procedures: Shift Supervisor - Reactor Operator — Shift Supervisor





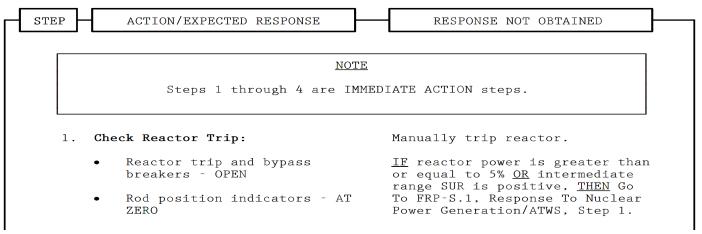
# **Procedure Types**

### **Every Control Room Activity in Plant Has Procedure**

- Normal Operating procedures
- Alarm Response Procedures
- Emergency Operating Procedures
- Severe Accident Management Guidelines
- Etc....

Focus of most HRA

#### **Procedures Outside Control Room are Less Formalized**


- Work orders
- Pre-job briefs



# Paper-Based Procedures

#### **Currently, Procedures in US NPPs are Paper**

- Following Three Mile Island, procedures have been symptom-oriented
  - Symptom Action Plant Response Alternative Action (if First Action Doesn't Work)



 Currently maintain 1000s of pages of procedures in control room



# Issues with Paper-Based Procedures

#### **Multiple Simultaneous Procedures**

- More than one thing happening at a time
- Placekeeping and navigational challenges for operators

#### **Sequential Presentation of Steps in Procedures**

- Operators must loop through procedures, even when they know what's wrong
- No jump ahead and no pause to wait for change in conditions (somewhat resolved by continuous action)

#### **Procedural Information is Static**

May not represent actual plant parameters or conditions

#### **Cautions and Warnings May be Unusable**

Paper foldouts difficult to use



# **Computerized Procedures**

#### **Advantages**

- Minimize paper and provide easier updates as needed
- Provide easier navigation to other procedures
- Provide embedded process information
  - Specific parameters needed by procedure can be shown in procedure
- Automatic placekeeping
- Automatic execution of procedure steps

#### **Disadvantages**

- Less reliable than paper (need power, hardware, and software)
- Breakdown in control room communication (keyhole effect)



# Types of Computerized Procedures

| Capability                                                                                  | Computerized Procedures |        |        |
|---------------------------------------------------------------------------------------------|-------------------------|--------|--------|
|                                                                                             | Type 1                  | Type 2 | Type 3 |
| Select and display procedure on computer screen                                             | Yes                     | Yes    | Yes    |
| Provide navigation links within or between procedures                                       | Yes                     | Yes    | Yes    |
| Display process data in the body of procedure steps                                         | No                      | Yes    | Yes    |
| Evaluate procedure step logic and display results                                           | No                      | Yes    | Yes    |
| Provide access links to process displays and soft controls that reside on a separate system | No                      | Yes    | Yes    |
| Issue control commands to equipment from embedded soft controls                             | No                      | No     | Yes    |
| On operator command, evaluate a sequence of steps that is predefined by the procedure       | No                      | No     | Yes    |

Type 4 = fully automated operations?



#### Historic HRA Treatment of Procedures

#### Most HRA Methods Address Paper-Based Procedures

- Earliest HRA method (Technique for Human Error Rate Prediction—THERP) addressed:
  - Errors in the preparation of written procedures (Table 20-5)
  - Failure of written procedure use during normal and abnormal operations (Table 20-6)
  - Omission of a step (as a function of how many steps) (Table 20-7)
  - Different effects of procedures on stress for skilled vs. novice operators (Table 20-16)
- In THERP, poor procedures increase likelihood of error



#### **Current HRA Treatment of Procedures**

# HRA Methods Treat Procedures as a Performance Shaping Factor

- Procedural Quality (poor quality increases human error)
- Procedural Adherence or Use
- Experience and Training on Procedures

#### **Procedures in Practice in HRA**

- HRA assumes high quality of procedures, adherence, and training for control room applications
- Only when poor quality, adherence, or experience that human error is increased in the HRA
- Emerging insight: plant, cultural, and regulatory differences in what level of adherence is expected



#### Human Failure Events for Procedures

# HRA Methods Model Most Common Failures in Using Procedures

- Skipping a step
- Misreading or misinterpreting a step
- Performing steps in wrong order
- Performing steps too early or too late for plant requirements
- Going to the wrong procedure
  - Operators must often branch to different procedures
    - e.g., AOP-16 goes to E-0 goes to E-3 for SGTR



# **New Performance Shaping Factors**

#### **Communications**

 Computerized procedures with embedded system indications may eliminate the common frame of reference across the control room

#### Workload

- Ideally, workload decreased by added functionality and ease of use
- If computerized procedure fails, actually increases workload

## **Human-System Interface Quality and Usability**

 Good human factors engineering required for presentation, navigation, and functionality of computerized displays



#### New Human Failure Modes

#### **Failure to Transfer to Backup Procedures**

 Can operator transfer to other computerized or paper backup procedures if computerized system crashes?

#### **Operator Failure Under Degraded Functionality**

 Automated diagnosis in computerized procedures may fail, requiring considerable operator expertise beyond what is normally required

#### **Operator Failure to Recover from Input Errors**

 If operator initiates wrong action, must be able to backtrack, even if a series of automated actions

#### **Operator Failure to Follow Computerized Procedures**

Skipped step can result in missed information and wrong displays



#### **New HRA Methods?**

# **Current HRA Not Optimized for Computerized Procedures**

- THERP, ASEP, CBDT, SPAR-H, and ATHEANA don't address computerized procedures
- No method addresses all aspects of computerized procedures

#### International Development of New HRA Methods

- MERMOS: French HRA method designed to model the dynamic nature of computerized procedures with automatic diagnosis found in original N4 reactors
- KAERI: Korean HRA method being developed for computerized procedures and other digital HMIs



# Commonalities Across Digital Systems

## **New ways of interacting**

- Presentation of information is different
  - Opportunity for crews to work individually
  - Information is consolidated and distilled and not necessarily always visible or shared
- Controls are different
  - Embedded controls in display allow workstation operation individually
  - Higher automation risks taking operator out of loop
- Different drivers on performance
  - Different human failure events
  - Different human error probabilities



#### **Conclusions**

#### **HRA** is Needed

- Identify where human error traps occur (and prevent them)
- Credit human successful human actions that improve plant performance
- Identify safety margins on human activities where economic efficiencies may be gained

#### **INL** is Conducting HRA research

- Gather empirical data with digital HMIs to inform HRA
  - Use full-scope and microworld simulators
- Adapt existing HRA methods to be more digital friendly
  - Current efforts centered on SPAR-H HRA method
- Develop new HRA approaches
  - Dynamic HRA using virtual reactor operators to test wider range of performance including errors of commission
- These HRA activities will improve licensing process

