Assessment of the V&V Challenges of Accident Tolerant Fuels

Koroush Shirvan

Principal Research Scientist

Director of MIT ATF IRP

Department of Nuclear Science and Engineering

Multiphysics Model Validation Workshop

June 28, 2017

Outline

ATF IRP Overview

- ATF Materials
 - Fabrication Technology

Examples of V&V Needs

Concluding Remarks

Acknowledgements: Funding for this work has been provided by DOE IRP contract # DE-NE0008416 and Center for Advanced Nuclear Energy Systems.

Accident Tolerant/Advanced Technology Fuel Program (Recent)

Shirvan K., et al., NED 270 (2014)

MIT LWR Simulation Experience

- Selected Tools Applicable to LWR Reactors with Prior Experience:
 - > Red: Tools currently used for ATF
 - > Green: CASL tools used in CASL Summer Institute for ATF
 - Orange: Modified Source Code

Category	Commercial Tools	Licensing Tools (NRC)	Academic/DOE Advanced M&S
Reactor Physics	CASMO SIMULATE	SCALE PARCS	SERPENT MPACT
Thermal- Hydraulics	VIPRE STARCCM	COBRA	COBRA-TF
Safety/System	S3K, RELAP5	TRACE	
Fuel Performance	ABAQUS FALCON*	FRAPCON FRPTRAN	MOOSE/BISON FRAPCON-MIT
Severe Accident	MAAP*	MELCOR	

MIT ATF Experimental Facilities

Limited Sample Testing is Underway

Upto 1500°C Steam/Air
Oxidation
400-500°C Steam Oxidation
PWR CRUD Loop

Prototypic 4-Point Bend Test
Prototypic Pressure Tube Test
Burst Test (Plug & Liquid)
Mechanical/Thermal Creep

Experimental Facilities

Full Surface Characterization
Upto 1500°C Quench Test
SS/Transient CHF Testing

Ion Irradiation
MITR PWR Loop

Post-Irradiation Examination (Dimension, SEM, Wettability)

DOE ATF Integrated Research Project

- Goal: Estimate Time-to-Failure → Failure Modes and a Framework
- Lead: MIT Co-Lead: UW, PSU, TAMU, ANATECH, AREVA
- Budget & Timeline: \$3 million and 3 years (started Dec 2015)
- ATF Candidates: Clad: FeCrAl, Mo, Cr Fuel: Additives/Dopants

• Steady State:

Strategy

- Minimal Neutronics Impact
- Durability (SCC, Plasticity, Fatigue)
- > PCI (startup, power ramps)
- Design Basis Accident (DBA)
 - > LOCAs, RIAs, LOFA
 - > Oxidation, Fracture/Rupture, PCI
 - > CHF, Quench Characteristics
- Beyond DBAs-Severe Accidents (SAs)
 - ➤ LBLOCA w/o SI, SBO (long/short term)
 - Oxidation, Fracture/Rupture of All Primary Components
 - > Fuel PCI, Buckling & Quench Performance

Estimation of Time-to-Failure

- Historically NRC has relied on MELCOR Type Severe Accident Tools
- TRACE may provide a more physics-based and accurate approach to time of fuel failure
- Historically, Fuel Performance (FP) tools development aimed to address the ability of the fuel to remain in a coolable geometry under accident,
 - > Increase in computational power may allow FP to address coping time.
- ATF IRP approach is to use all three approaches!

MELCOR [Left]
Short Term
Station Blackout
and TRACE
[Right]
LBLOCA w/o
Safety Injection

From:
Gurgan, A.,
Shirvan, K.,
ANS
Summer
(2017)

ATF Materials (Most Popular!)

Claddings Fuels

Monolayer

Green: Fuel Cycle Cost Benefit

ATF Cladding Materials

Claddings

Monolayer

- Maximum Allowable Temperature (Max Temp.)
 - ✓ FeCrAl Cladding limit is the most certain
 - ✓ Zr/Cr limit is for slow transients
 - ✓ Mo limit depends on its structural role

Concept	Max Temp.	Comments
FeCrAl Monolayer Clad	~1500 °C	Melting Point
Zirc with Cr Coating	~1330 °C	Eutectic Melt Point
Zirc with Mo + Cr Coating	~ 1900 °C	Depends on Thickness and Inner Layer Oxidation
Zirc with Mo + FeCrAl/Zr	~1900 °C	Depends on Thickness and Inner Layer Oxidation
SiC with SiCf Composite	> 2000 °C	Depends on Architecture
SiCf with Cr Coating	~ 1900 °C	Cr is there for Normal Ops.
Zirc with SiCf with Cr	~1900 °C	Melt point of Zr and Cr

Metal Composite Fabrication Techniques (1)

• Commercial Scalability vs. Desired Quality/Tolerance

Physical Vapor Deposition

Cold-Spray

EB Welding → Hydraulic
Pressurization → Co-Pilgering

Hot Hydrostatic Pressing

Image From: V.V Reddy et al. | IAEA Tech. Meeting, 2016.

Metal Composite Fabrication Techniques (2)

FeCrAl/Cr/Zry-4

Images courtesy of Kim H.G, TopFuel 2016

SiC Ceramic/Metallic Composite Fabrication Technique

Start with Monolith
SiC → Wind SiC
Fibers → Infiltrate SiC
Matrix → CVD Barier

Wind SiC Fibers →
Infiltrate SiC Matrix
→ Thick CVD Barrier

Laser Driven Chemical Vapor Deposition Method (courtesy of Free-Form-Fiber)

Plasma Spray of Chromia (http://www.gordonengl and.co.uk/xpmg23.htm)

Cladding Fuel Performance Simulation Metrics

- What information can we get from experiments?
- What information do we need to simulate time of failure?

Thermo-Mechanical Density Thermal Conductivity **Emissivity** Thermal Expansion Elastic Modulus Posisson Ratio Swelling/Growth Thermal Creep (primary, etc) Irradiation Creep High Temperature Creep Plasticity/Irradiation Hardening Mever Hardness Cladding Damage Mechanisms

Waterside Corrosion Corrosion Layer Growth/CRUD (phase/stage dependent) Thermal conductivity of Corrosion Layer Phase Transformation Radiation Induced Segregation **Stress Corrosion Cracking** (i.e. Intergranular) Hydrogen Pickup Fraction **Hydrogen Migration Hydride Formation** Strength/Ductility Degradation from Hydrogen

M&S Tools Challenges

Metrics	Tools	Address	
Plasticity/Large Deformation	BISON/FRAPTRAN	FEA/Empirical	
Fracture Failure/Post Burst Behavior	ABAQUS/BISON	FEA + Empirical	
Critical Heat Flux/Post- CHF/Quench	TRACE/BISON	Empirical	
Stress Corrosion Cracking	BISON/FRAPCON	Empirical	
Corrosion/CRUD Deposition	BISON/FRAPCON	Empirical	
Mechanical Shock/Impact	ABAQUS	FEA/Emperical	
Multi-Layer Interaction	BISON/FRAPCON	FEA/Improved Model	
Extended Gap Opening	BISON/FRAPCON	Improved Model/Empirical	
Non-Fuel Structure Performance during SA	TRACE	Empirical/Improve Model	

Images From: C.P. Massey et al., JNM 470 (2016) 134

Note: TRACE has capability for time-dependent geometric feedback of fuel cladding.

Examples

Coated Cladding Fuel Performance

SiC Cladding Failure Mode

• SiC Integral Fuel Performance

Cladding Water-Side Heat Transfer

Coated Cladding Fuel Performance

Cladding/Coating Material & Thickness

	Cladding	Coating(s)			Down History	
	M5 / Zr4 / ZIRLO	Cr Mo FeCrAl Power His		Power History		
Case 1. M5/Zr4/ZIRLO + Cr Coating	521.5µm	50 µm	-	-	Constant @ 18 kW/m	
Case 2. M5/Zr4/ZIRLO + Cr Coating	521.5µm	50 µm	-	-	PWR Power History	
Case 3. M5/Zr4/ZIRLO + Mo/FeCrAl Coating	521.5µm	-	20 µm	30 µm	Constant @ 18 kW/m	
Case 4: M5/Zr4/ZIRLO + Mo/FeCrAl Coating	521.5µm	-	20 μm	30 µm	PWR Power History	

Coated Cladding Fuel Performance (2)

f (T, fluence)	Zr	FeCrAl	Cr	Mo	
Elastic (Ε, ν)					
Thermal Conductivity					
Thermal Expansion					
Swelling					
Thermal Creep					
Irradiation Creep					
Yield Strength					
Failure Strength					
Available	ole Limited/In Progress Very limited/ Unavailable				

Coated Cladding Fuel Performance (3)

• Steady-State Plasticity = Uncertainty in Performance

Coated Cladding Fuel Performance (4)

- Currently not part of any regulatory limit:
 - Likely if Credit to ATF is Requested

SiC Cladding Failure Mode

- Different layers (Monolith vs. Composite) have different thermo-mechanical property
 - > Irradiation swelling strain is in opposite direction to thermal strain.

Stress @ Shutdown:
Thermal strain that is
going against
radiation induced
swelling strain is very
small at shutdown.

SiC Cladding Failure Mode (2)

• Can stress-induced failures meet current fuel failure standards (1 ppm)?

From: Mieloszyk, **Shirvan** et al., ANFM, 2015

SiC Cladding Failure Mode (3)

• Important lesson learned from 2014 MIT SiC Modeling Workshop

Weak Modeling & Simulation

PIE Figure From Morris et al., ORNL-24 (4-00), 2014

Strong Modeling & Simulation

Image From: https://atrnsuf.inl.gov/documents/review2016/161102_Ka toh_NSUF-APR_Rad-HHF-synergism%20R1.pdf

SiC Integral Fuel Performance

- SiC cladding results in significant increase in UO₂ temperature.
 - ➤ SiC irradiated thermal conductivity is almost 1/3 of Zircaloy.
 - > SiC lack of creep down also contributes to this higher fuel temperature.

* Simulation Performed with FRAPCON-MIT, 2014

SiC Integral Fuel Performance (2)

- How can we reduce the fuel temperature:
 - > Fuel w/additives or gap fillers
- How confident are we in fuel temperature predictions:

Zr-4 Fuel Performance	FRAPCON	BISON
Max Beginning of Life T (K)	1367	1352
Max End of Life T (K)	1574	1656
Max Plenum Pressure (MPa)	11.1	11.1
Max FGR (%)	11.9	8.6

SiC Fuel Performance	FRAPCON	BISON
Max Beginning of Life T (K)	1631	1606
Max End of Life T (K)	1852	2288
Max Plenum Pressure (MPa)	14.2	35
Max FGR (%)	28.6	53.6

Table from: **Shirvan**, ICAPP '14

SiC Integral Fuel Performance (3)

- Gap remains open for extended period of time for SiC case.
 - > Typical fuel performance validation data are integral

Cracking models could account for over 50% of gap closure

Michel et al., Eng. Frac. Mech., **75**, 3581 (2008)

UO₂ FRAPCON assessment cases as a function of burnup [Fig. from https://www.nrc.gov/docs/ML1110/ML11101A006.pdf]

Cladding Water-Side Heat Transfer

- Departure from nucleate boiling (and dryout) during steady-state and fast/slow transients needs to be measured for different ATF surfaces
 - ➤ Large V&V challenge without prototypic size testing (e.g. Scaling)

Recent Pool
Boiling Data
show Zr and Cr
to be similar

From: Kam D.H., Et al., An. of Nuc. Energy 76 (2015)

	٦.	
	1600 -	□ Bare sample
	- 1	○ FeCrAl-150C-1hr
	1400 -	△ FeCrAl-300C-1hr
	- 1	▼ FeCrAl-600C-1hr
	1200 -	FeCrAl-600C-6hr
Heat Flux (kW/m²)	1000	✓ · · · · · · · · · · · · · · · · · · ·
\geq		
$\stackrel{>}{\sim}$	800	A A
š	٦ ٥٠٠٠	O{
正	1	
ä	600 -	
Ĭ	- 1	
	400 -	
	- 1	o de la companya de l
	200 -	
		.OV A
	0 🕂	
	0	10 20 30 40 50 60 70
		Wall Superheat (K)
		time (s)
		2000007000

From: Seo et al., JHMT, 102, 2016

	Rough	ness (µm)	Contact Angle	
Sample Condition	Zirc-4	FeCrAl	Zirc-4	FeCrAl
As Machined	0.352	0.651	83.5°	79.7°
Oxidized	0.424	0.712	48.2°	39.4°
Quench Sample	0.312	0.384	83.1°	81.1°

What are the effect of gammas and neutrons?

Cladding Water-Side Heat Trans

- Parameters and Physics of interest:
 - > Roughness
 - Contact Angle
 - Wickability
 - > Emissivity
 - Quench Temp
 - Water Temp
 - Quench velocity
 - > Fluid Regime

Severe Accident Progression

- Accident Sequence:
 - Steady State (leading up to accident)
 - Blowdown/Boil off/Rod Burst
 - ▶ Heat up to Primary System
 Failure (e.g. hot log creep
 rupture) → Depressurize
 - Heat up and Core Melt If Nothing is Done!
- If extended grace period is credited then <u>New Failure</u> <u>Modes</u> during the BDBA sequence need investigation.

TRACE PWR Simulation of SBO

Concluding Remarks

• State-of-Art high fidelity simulation resources are needed to design smart out-of-pile/in-pile experiments and assess ATF time-to-failure

 Much research needs to still focus on failure modes to allow for an informed UQ analysis.

• Despite tremendous progress in M&S, V&V of many key parameters still requires proto-typical geometry and conditions (e.g. irradiation/Temp/P).

- Close collaboration of all organization involved in nuclear R&D is critical for ATF development.
 - ➤ Lets Join Forces to Tackle the ATF Challenge Problem!

